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Abstract
Electron transport through a quantum sphere with three one-dimensional wires
attached to it is investigated. An explicit form for the transmission coefficient as
a function of the electron energy is found from first principles. The asymmetric
Fano resonances are detected in the transmission of the system. The collapse
of the resonances is shown to appear under certain conditions. A two-terminal
nanodevice with an additional gate lead is studied using the developed approach.
Additional resonances and minima of transmission are indicated in the device.

1. Introduction

Electron transport in nanoscale multiterminal ballistic devices has attracted considerable
attention over the last decade. Rapid advances in nanoelectronic fabrication techniques
have made possible the realization of electron waveguide devices with dimensions smaller
than the elastic and inelastic scattering lengths of conduction electrons. Various interesting
multiterminal nanoelectronic devices, such as the single electron transistor [1–3] and the
three-terminal ballistic junction or Y-branch switch [4–6] have been proposed as promising
alternatives for future low-power, high-speed switching devices. Recent theoretical studies
reported transistor-like behaviour of various three-terminal molecule-based devices [7].

A number of theoretical and experimental works has been focused on the investigation of
electron transport in multiterminal quantum systems. Three-terminal ballistic junctions were
studied in [5, 6]. Electron transport in a three-terminal molecular wire connected to metallic
leads was investigated in [8].

One of the interesting phenomena detected in these systems is Fano resonances in
the transmission probability. Being a characteristic manifestation of wave phenomena in
a scattering experiment, resonances have received considerable attention in recent electron
transport investigations. A number of papers [9–13] have been devoted to the study of Fano
resonances in transport through various quantum dots. Resonant tunnelling through quasi-one-
dimensional channels with impurities is investigated in [14–17]. The temperature dependence
of the zero-bias conductance of the single-electron transistor is considered in [3]. Coherent
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Figure 1. Scheme of the device. An incident wave (IW) originating from reservoir 1 is reflected
back with amplitude r11 and scattered to reservoirs 2 and 3 with amplitudes t21 and t31, respectively.

transport through a quantum dot embedded in an Aharonov–Bohm ring is investigated in [18].
The line shape of resonances in the overlapping regime is studied in [19].

Interference phenomenaclosely related to the Fano resonances have attracted considerable
attention in the past few years. Those resonances are of universal nature and have been
observed in various systems. We mention, for example, atom photoionization, electron and
ion scattering, Raman scattering and so on. Recently, the line shape of resonances has been
discussed in experiments on electron transport through mesoscopic systems [2, 3, 20]. It
is shown in [21] that the same resonances occur in electron transport through a quantum
nanosphere with two wires attached to it.

Recent progress in nanotechnology has made it possible to fabricate conductive two-
dimensional nanostructures with spherical symmetry such as fullerenes and metallic spherical
nanoshells. A number of works have been devoted to the theoretical study of electron transport
on spherical surfaces [22–24]. The purpose of the present paper is an investigation of the
electron transport through a three-terminal nanodevice consisting of a conductive nanosphere S
with three one-dimensional wires attached to it at the points q j ( j = 1, . . . , 3). We denote by
q j a set of spherical coordinates (θ j , ϕ j ) of the point.

2. Hamiltonian and transmission coefficient

In our model, the wires are taken to be one-dimensional and represented by semiaxes
R+

j = {x : x � 0} ( j = 1, . . . , 3). They are connected to the sphere by gluing the point
x = 0 from R+

j to the point q j from S. We suppose qi �= q j for i �= j . The scheme of the
device is shown in figure 1. Here t21(E) and t31(E) are the transmission amplitudes of the
electron wave and r11(E) is the reflection amplitude.

The Hamiltonian of a free electron in the wire is H j = p2
x/2m∗, where m∗ is the electron

effective mass and px is the momentum operator for the electron in wires. Electron motion
on the sphere is described by the Hamiltonian HS = L2/2m∗r2 where r is the radius of the
nanosphere and L is the angular momentum operator. A wavefunction ψ of the electron
in the device consists of four parts: ψS, ψ1, ψ2 and ψ3, where ψS is a function on S and ψ j

( j = 1, . . . , 3) are functions on R+
j . We note that in the general caseψS is not the eigenfunction

of the operator HS.
The Hamiltonian H of the whole system is a point perturbation of the operator

H0 = HS ⊕ H1 ⊕ H2 ⊕ H3. (1)
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To define this perturbation we use boundary conditions at points of gluing. The role of the
boundary values for the wavefunction ψ j (x) is played, as usual, by ψ j (0) and ψ ′

j (0). The
zero-range potential theory shows that to obtain a non-trivial Hamiltonian on the whole system
we must consider functions ψS(x) with a logarithmic singularity at points of gluing q j [25]

ψS(x) = −u j
m∗

π h̄2 ln ρ(x, q j ) + v j + o(1) (2)

as x → q j . Here u j and v j are complex coefficients and ρ(x, q) is the geodesic distance on
the sphere between the points x and q j . It is known that the most general self-adjoint boundary
conditions are defined by some linear relations between ψ j (0), ψ ′

j (0) and the coefficients u j ,
v j . Following [21] we will write this conditions in the form

v j =
3∑

k=1

[
B jkuk − (h̄2/2m∗)A jkψ

′
k(0)

]
,

ψ j (0) =
3∑

k=1

[
A∗

k j uk − (h̄2/2m∗)C jkψ
′
k(0)

]
, j = 1, . . . , 3.

(3)

Here complex parameters A jk, B jk and C jk form 3×3 matrices. The matrices B and C have to
be Hermitian because the Hamiltonian H is a self-adjoint operator [25]. To avoid a non-local
tunnelling coupling [24] between different contact points we will restrict ourselves to the case
of diagonal matrices A jk, B jk and C jk only.

According to the zero-range potential theory diagonal elements of the matrix B determine
the strength of point perturbations of the Hamiltonian HS at the points q j on S [24]. These
elements may be expressed in terms of scattering lengths λB

j on the corresponding point

perturbations: B j j = m∗ ln(λB
j )/π h̄2. Similarly, elements C j j describe the strength of point

perturbations at the points x = 0 in the wires and may be expressed in terms of scattering
lengths λC

j by the relation C j j = −m∗λC
j /2h̄2 [21]. For convenience, we represent parameters

A j j in the form A j j = m∗
√
λA

j eiφ j/h̄2, where λA
j has the dimensions of length and φ j is the

argument of the complex number A j j . Note that the effect of the scattering lengths λA
j , λB

j and
λC

j on the electron transport has been discussed in [21]. In the present paper we concentrate
our attention on the facts independent of the contact parameters.

To obtain transmission and reflection coefficients of the system one needs a solution of
the Schrödinger equation for the Hamiltonian H . The function ψ1(x) in this solution is a
superposition of incident and reflected waves while the functions ψ2(x) and ψ3(x) represent
scattered waves. The wavefunction ψS(x) may be expressed in terms of the Green function
G(x,y; E) of the Hamiltonian HS [21]

ψS(x) =
3∑

j=1

ξ j (E)G(x, q j; E),

ψ1(x) = e−ikx + r11(E)eikx ,

ψ2(x) = t21(E)eikx ,

ψ3(x) = t31(E)eikx .

(4)

Here k =
√

2m∗E/h̄2 is the electron wavevector in wires and ξ j (E) are complex factors.
It is well known [26] that the Green function G(x,y; E) may be expressed in the form

G(x,y; E) = − m∗

2h̄2

1

cos(π t)
Pt− 1

2
(− cos (ρ(x,y)/r)) (5)

where Pν(x) is the Legendre function and t (k) = √
r2k2 + 1/4.
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Considering the asymptotics (2) of ψS(x) from (4) near the point q j , we have

u j = ξ j (E), v j =
3∑

i=1

Qi j (E)ξi (E).

Here Qi j (E) is the so-called Krein Q-function, that is a 3 × 3 matrix with elements

Qi j (E) =



G(qi , q j ; E), i �= j ;

lim
x→q j

[
G(q j ,x; E) +

m∗

π h̄2 ln ρ(q j ,x)

]
, i = j .

(6)

Using the asymptotic expression for the Legendre function in the vicinity of the point x = −1,
we get the following form for diagonal elements of Q-matrix [24]

Q j j(E) = − m∗

π h̄2

[



(
t (k) +

1

2

)
− π

2
tan(π t (k))− ln(2r) + CE

]
, j = 1, . . . , 3 (7)

where 
(x) is the logarithmic derivative of the �-function and CE is the Euler constant.
Substituting (4) into (3), we get a system of six linear equations for ξ j , r11, t21 and t31. For

convenience, we introduce dimensionless elements of Q-matrix

Q̃i j (E) = (h̄2/m∗)(Qi j(E)− Bi j).

Solving the system of equations, we obtain

r11 = (kλC
1 − 4i)�1

(kλC
1 + 4i)�

(8)

where

� =

∣∣∣∣∣∣∣∣

Q̃11 − 2kλA
1

kλC
1 +4i

Q̃12 Q̃13

Q̃21 Q̃22 − 2kλA
2

kλC
2 +4i

Q̃23

Q̃31 Q̃32 Q̃33 − 2kλA
3

kλC
3 +4i

∣∣∣∣∣∣∣∣
, (9)

and

�1 =

∣∣∣∣∣∣∣∣

Q̃11 − 2kλA
1

kλC
1 −4i

Q̃12 Q̃13

Q̃21 Q̃22 − 2kλA
2

kλC
2 +4i

Q̃23

Q̃31 Q̃32 Q̃33 − 2kλA
3

kλC
3 +4i

∣∣∣∣∣∣∣∣
. (10)

The transmission amplitude t21 is given by

t21 =
16k

√
λA

1 λ
A
2 ei(φ1−φ2)[2kλA

3 Q̃21 − (kλC
3 + 4i)(Q̃21 Q̃33 − Q̃23 Q̃31)]

i(kλC
1 + 4i)(kλC

2 + 4i)(kλC
3 + 4i)�

. (11)

Similarly, we can write

t31 =
16k

√
λA

1 λ
A
3 ei(φ1−φ3)[2kλA

2 Q̃31 − (kλC
2 + 4i)(Q̃31 Q̃22 − Q̃32 Q̃21)]

i(kλC
1 + 4i)(kλC

2 + 4i)(kλC
3 + 4i)�

. (12)

We emphasize that the relation

|r11|2 + |t21|2 + |t31|2 = 1 (13)

is valid for arbitrary energy E in compliance with the current conservation law.
The transmission coefficient T21 ≡ |t21|2 as a function of the dimensionless parameter kr

is shown in figure 2. The figure corresponds to the case when contacts are placed equidistant on
the great circle of the sphere. Denoting by ρi j the distance ρ(qi , q j ) between the points qi and
q j , we can represent the position of contacts by relationρ12 = ρ13 = ρ23 = 2πr/3. In this case,
the relation t21 = t31 is valid for arbitrary energy due to the symmetry of system. Therefore
T21 does not exceed the value 1

2 . All figures correspond to the case λA
j = λB

j = λC
j = 0.1r for

all j .
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Figure 2. Transmission coefficient T21 as a function of the dimensionless parameter kr at
ρ12 = ρ13 = ρ23 = 2

3πr .

3. Fano resonances

It is evident from equation (11) that the transmission amplitude t21(E) has zeros of two different
types. The zeros of the first type are stipulated by the poles of Qi j (E) and coincide with the
eigenvalues El of the operator HS. The denominator in (11) has a pole of the third order at
E = El while the numerator has a pole of the second order only. Hence, the transmission
coefficient vanishes in these points.

The zeros of the second type are determined by the following equation:

2kλA
3 Q̃21 − (kλC

3 + 4i)(Q̃21 Q̃33 − Q̃23 Q̃31) = 0. (14)

The positions of the second-type zeros depend on the arrangement of q j on the sphere in
contrast to the positions of the first-type zeros.

We will show below that in the vicinity of the first-type zeros El the transmission coefficient
has the form of the asymmetric Fano resonance. Consider the form of Qi j(E) near the point
El

Qi j (E) � αi j

El − E
+ βi j . (15)

The residues αi j of Qi j (E) at the point El may be expressed in terms of eigenfunctions of the
operator HS

αi j =
l∑

m=−l

Ylm(qi)Y
∗
lm(q j ) (16)

where Ylm(x) are the spherical harmonics.
Denote by β̃i j the modified matrix β

β̃i j = βi j − Bi j − 2m∗kλA
j

h̄2(kλC
j + 4i)

δi j .

Substituting (15) into (11) and considering linear in E − El approximation for the numerator
and the denominator of (11), we obtain

t21(E) � η
E − El

E − ER − i�
. (17)
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Figure 3. Transmission coefficient T21 as a function of the dimensionless parameter kr . (a) ρ12 =
0.98πr , ρ13 = 0.52πr , ρ23 = 0.5πr; (b) ρ12 = πr , ρ13 = ρ23 = 0.5πr (collapse of the Fano
resonances).

Here ER determines the position of the asymmetric peak, � is the half-width of the resonance,
and η is a normalization factor. It is evident from (17) that the transmission coefficient has
the form of the Fano resonance near El . The parameters ER and � of the Fano resonance are
determined by

ER + i� = El +
det α∑

i, j [αi j ]cβ̃i j

(18)

where [αi j ]c is the algebraic complement of αi j in the matrix α. The normalization factor η is
given by

η =
16m∗k

√
λA

1 λ
A
2 exp(i(φ1 − φ2))

ih̄2(kλC
1 + 4i)(kλC

2 + 4i)
∑

i, j [αi j ]cβ̃i j

(α23α31 − α21α33). (19)

Note that the asymptotics (17) for t21(E) is valid for arbitrary parameters of contacts λA
j , λB

j

and λC
j .

If det α = 0 at a given l then a collapse of the Fano resonance occurs near El . In this
case, the pole and the zero of the transmission amplitude coincide and cancel each other
(figure 3). Note that the second-type zeros remain on the plot of T21(E) in contrast to the
situation considered in [21, 24].

To define the condition of the collapse we introduce three complex vectors V j by the
following equation

V j =



Yl,l (q j )

Yl,l−1(q j )

. . .

Yl,−l (q j)


 .

Matrix α is the Gram matrix for vectors V j because αi j = 〈Vi |V j〉. Hence, the condition
det α = 0 is satisfied if and only if vectors V j are linearly dependent.

If we choose a coordinate system on the sphere so that the points q j were on the circle
θ = θ0 = constant and fix the origin of the azimuthal angle ϕ at the point q1, then points q j
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have the following coordinates

q1 = (θ0, 0), q2 = (θ0, ϕ2), q3 = (θ0, ϕ3).

Vectors V j can be represented in the form

V1 =




f l
l

f l−1
l

. . .

f −l
l


 , V2 =




f l
l eilϕ2

f l−1
l ei(l−1)ϕ2

. . .

f −l
l e−ilϕ2


 , V3 =




f l
l eilϕ3

f l−1
l ei(l−1)ϕ3

. . .

f −l
l e−ilϕ3


 ,

where f m
l = Cml P |m|

l (cos θ), P |m|
l (x) are the Legendre polynomials, and Cml are the

normalization factors of the spherical harmonics.
Denote by M the 3×(2l+1)matrix composed of three vectors V j. The condition detα �= 0

holds if and only if the rank of the matrix M is 3. In general, if points q j are placed on the
sphere in a random manner, all vectors V j are linearly independent. If ϕ2 = π then all elements
of M with different parity of m and l are equal to zero since θ0 = π/2 and P |m|

l (0) = 0 for
odd m + l. Elements of V2 with even l + m in this case are equal to (−1)l f m

l . Hence the
condition V2 = (−1)lV1 is satisfied that directly implies det α = 0. Thus the collapse of the
Fano resonances takes place if the points q1 and q2 are antipodal on the sphere. This condition
is independent of the position of q3.

It is evident that condition det α = 0 holds if any pair of three points q j consists of
antipodal points. But if ϕ3 = π or |ϕ2 − ϕ3| = π then the normalization factor η vanishes
because α23α31 − α21α33 = 0. In this case, the linear approximation for the denominator and
the numerator of t21 is inapplicable, and the quadratic in E − El terms in (11) must be taken
into account. The equation similar to (17) may be obtained for t21 with

ER + i� = El +
∑
i, j

[αi j ]cβ̃i j

(∑
i, j

αi j [β̃i j ]c

)−1

. (20)

In this case, the half-width � of the resonance is determined by the parameters β̃i j , and the
condition � = 0 requires a special choice of scattering lengths λA

j , λB
j and λC

j . Therefore,
in general, the collapse of the Fano resonances appears when the points q1 and q2 only are
antipodal on the sphere.

4. Two-terminal device with an additional gate lead

The dependence T21(E) is of particular interest because according to the Landauer–Büttiker
formula the conductance of the system as a function of the chemical potential has the same
form at zero temperature. For experimental observation of such a dependence one needs to
change the electrochemical potential of electrons on the sphere relative to the Fermi energies
in reservoirs. This may be realized by using an additional gate electrode near the sphere which
is connected to the system through a potential barrier. Here we consider this additional gate
lead as one-dimensional broken wire. The scheme of the studied device is shown in figure 4.
In this case, one can shift energy levels of electrons on the sphere relative to the Fermi energy
in the reservoirs 1 and 2 by changing the voltage Vg.

The electron wave outgoing from the sphere in this case reflects in the third wire and
returns back completely. The solution of the Schrödinger equation for this system differs
from (4) by the expression for ψ3(x)

ψ3(x) = t31eikx + t31eiδe−ikx (21)
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Figure 4. Scheme of the nanodevice with the break in the third wire. V is the bias voltage between
reservoirs 1 and 2, and Vg is the gate voltage.
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Figure 5. Transmission coefficient as a function of the dimensionless parameter kr in the case of
the broken third wire at ρ12 = πr , ρ13 = ρ23 = 0.5πr and L = 0.57r .

where δ = 2kL + π is the phase incursion and L is the distance between q3 and the point of
break.

The transmission coefficient in this case may be expressed in the form

t21 =
16k

√
λA

1 λ
A
2 ei(φ1−φ2)[2kλA

3 Q̃21 − (kλC
3 − 4 cot(δ/2))(Q̃21 Q̃33 − Q̃23 Q̃31)]

i(kλC
1 + 4i)(kλC

2 + 4i)(kλC
3 − 4 cot(δ/2))�̃

(22)

where

�̃ =

∣∣∣∣∣∣∣∣

Q̃11 − 2kλA
1

kλC
1 +4i

Q̃12 Q̃13

Q̃21 Q̃22 − 2kλA
2

kλC
2 +4i

Q̃23

Q̃31 Q̃32 Q̃33 − 2kλA
3

kλC
3 −4 cot(δ/2)

∣∣∣∣∣∣∣∣
. (23)

The dependence T21(E) for the case of the broken third wire is shown in figure 5. In contrast
to the case considered above the height of the peaks can reach unity since there is no energy
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loss due to the outgoing of electrons into the third wire. Moreover the additional resonance
peaks and minima arise because of the interference of electron waves in the broken wire.

5. Conclusions

Electron transport through a three-terminal nanodevice is considered. The transmission and
reflection coefficients of the device are found by solving the Schrödinger equation. We have
shown that, in the general case, the function T21(E) has zeros of two different types discussed
in section 3. Zeros of the first type coincide with the eigenvalues El of the unperturbed electron
Hamiltonian HS on the sphere. The transmission coefficient T21(E) has the form of asymmetric
Fano resonance in the vicinity of the first-type zeros. The parameters of the resonance ER and
� are determined by equation (18). If the points of contact q1 and q2 are placed antipodal on
the sphere then the collapse of the Fano resonances occurs. In this case, the first-type zeros
disappear while the second-type zeros remain on the plot of T21(E) in contrast to the situation
discussed in [21].

Using the developed approach we consider the two-terminal nanodevice with the additional
gate electrode. Additional resonances and minima of transmission arise because of the
interference of electron waves in the third wire.
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